
Python vs. Java in 2023: Side-by-Side Comparison
Python vs. Java is a good starting point to assess how to complete your upcoming project. Choosing the right language depends on your business as well as the product(s) you intend to create.
Just recently, the August 2020 Tiobe index – a trusted resource for measuring the popularity of programming languages – listed Java as the second most popular language, and put Python at third.
It’s hard to decide which programming language will fit your business objectives best when you don’t know the strengths and weaknesses of the technologies surrounding it.
In fact, Python and Java have many similarities when you compare their features using six important features that any programming languages should have, those features being:
- Performance
- Readability
- Collaboration
- Hiring
- Learning Difficulty
- Dynamic vs. Static
Although Python does just a little bit better than Java when these features are at stake, it’s still worth looking at an in-depth comparison.
Luckily, Trio is here for you. You’ll find a side-by-side Python vs. Java comparison right here!
Python vs. Java: Side-By-Side Comparison
Both Java and Python have some unique advantages.
Thus, in order to get to the bottom of this Python vs. Java debate, you’ll have to cross-examine their differences closely and look at the languages side-by-side to figure out what’s what.

Performance
Java is faster than Python. This is for a number of reasons.
Python has a slower runtime because it is interpreted. Considering this, it takes more work to get Python source code to the nitty-gritty bits that computers can actually read. Java, with the aide of its JIT compiler, has a natural advantage over Python in this regard.
What’s more, although interpreted languages can provide an environment to debug-as-you-go, so to speak, certain runtime errors that have to do with type checking and conversion will be left completely vulnerable.
Parsing through such errors will indubitably take time – time that Java developers can use more efficiently.
TL;DR: Java wins.
Related reading: Vue.js vs. Angular in 2022: Side-by-Side Comparison
Learning Difficulty
Python is easier to learn. The coding style is instinctive. In fact, Python is known as the go-to coding language to teach beginner programmers.
Perhaps this is because Java is middle-level. In some ways, this means that complexity is built-in.
The utility of significant whitespace definitely contributes to Python's ease of use as well. Ultimately, if you want something easy, go with Python.
TL;DR: Python wins.
Dynamic vs. Static
This subject makes for another Python vs. Java crossroads. Whether to use dynamically typed languages or statically typed language is a matter of preference.
Python is dynamic; Java is static.
Dynamic languages only perform type checking at runtime as compared to static languages where type checking is done at compilation.
Type checking is the process of ensuring that all reference types match up to their expected values.
This way the computer won’t get confused if, for example, an integer variable was given an alphabetic value.
Of course, misunderstandings – or bugs – do happen, and they’re all the more likely to happen with dynamic languages.
On the other hand, dynamic languages tend to be less verbose and are easier to debug in most cases. But is simplicity a good excuse for being vulnerable to errors?
TL;DR: Stalemate.
Code Readability
The Python philosophy has code readability at its core.
The language enables your developers’ code to be clean, readable, and concise.
Quite a few developers choose Python over other languages to avoid writing extra code and keep their programs maintainable.
Java is working toward the same goals. Java 9 implemented modules in an attempt to accelerate software development and provide additional structure. But it’s not there yet.
TL;DR: Python wins.
Popularity
The Tiobe Index clearly shows that Java is more popular than Python.
And yet, things are not as they seem. This measure of popularity relies on search queries conducted in Google, Google Blogs, MSN, Yahoo! Baidu, Wikipedia, and Youtube.
For alternative methodologies, consider the Popularity of Programming Language (PYPL) index.
Their methodology is dependent on Google searches for language tutorials. To some, this could indicate a higher investment in a certain language.
According to the PYPL index, Python is in first place with a 31.59% share of the overall data. Java has roughly half of that share at 16.9%.
TL;DR: Stalemate.
Community & Collaboration
There are many paths to follow to find community in either Python or Java.
Java User Groups (JUGS) are volunteer organizations that strive to share Java knowledge throughout the world via networking events.
These groups are increasingly popular and widespread.
In addition, JavaOne, a distinguished programming event, was held each year from 1996 to 2018. It’s now been rebranded as Oracle Code One as a hub for all programming in general.
Plus, under the Oracle ownership, Java is privileged with corporate sponsorship.
For all that, this could pale in the face of the Python community. The official website maintains that Python has 1637 user groups in 191 cities and 37 countries with over 860,333 members.
Python has conferences too. PyCon is the largest annual convention in support of Python. And PyLadies encourages women to take an interest in coding through mentorship.
None of this data can stack up to Stack Overflow, where you can guess millions of anonymous community members are hidden behind screens.
In reality, it is difficult to measure the sheer size and collaboration propensity of communities with the popularity and development flexibility of Python and Java. This is another stagnate note for the Python vs. Java discourse.
TL;DR: Stalemate.
Difficulty of Hiring Developers
This is undoubtedly a salient subject area for someone looking to start a 2020 project with qualified developers. Fortunately, you’ll have no difficulty in hiring developers for Python or Java.
Whatever the Python vs. Java rivalry entails, both languages are in high demand. Ergo, you’ll have a large pool of applicants. One piece of advice is to make sure you’re hiring the right developers.
TL;DR: Stalemate.
Now that you know how Python and Java compare, it might be worthwhile to look at how they stand alone, without the pressure of competition.
What Is Python?
Python is a high-level, general-purpose interpreted programming language.
Developed by Guido van Rossum, Python puts a particular emphasis on code reliability. The language’s syntactic use of significant whitespace is a noteworthy feature.
To review, high-level languages are in immediate contrast with low-level languages. Low-level languages don’t go far beyond the 0s and 1s of machine code, which bears the most resemblance to how computers talk.
Although low-level languages are slightly more readable than a couple of numbers, it can be just as confusing to look at. This is why high-level languages are much preferred.
High-level languages abstract machine code to syntax that can be understood relatively easily by human eyes.
As an interpreted language, Python is translated line by line at runtime. Because of this, developers can sometimes debug code in real-time, simplifying the debugging process.
General-purpose simply means that Python can be used for a diverse range of software purposes such as mobile or web development.

The most distinctive trait of Python is its use of whitespace. Typically, languages require some textual indicator that a block of code is finished. Often, those characters are brackets or semicolons. Instead, Python uses whitespace itself as a material marker for the end of a code block.
Python also happens to be object-oriented. This means developers can store data and metadata using the concept of objects as intuitive placeholders for real-life constructs.
Objects are defined inside of classes, making Python class-based. You can think of classes as templates for objects.
These features account for the gist of the Python programming language. Of course, there are some particular advantages as well.
What Are the Advantages of Python?
Python first appeared in 1990 and still it tops charts. Even now when search engines are filled to the brim with Java vs. Python inquiries, there must be a reason why developers finally chose to use Python over other languages.
- Third-Party Modules
Python has a repository of software called the Python Package Index (PyPI). It contains numerous third-party modules to help developers interact with most other languages and platforms.
- Support Libraries
On a related note, Python carries its own standard library that truly justifies its general-purpose categorization.
There are tools you can use for game development, web development, and even machine learning.
- Open-Source
Languages that have open-source licensing more often than not have the advantage of continuous improvement.
Developers who use Python and are committed to its advancement will have the opportunity to modify the language towards that end goal.
- Community
In the same vein, having a large community behind Python’s development doesn’t hurt.
The bigger the community, the more developers will be invested in Python's prolonged success.
- Data Structures
Data structures are a means of organizing data within code. For example, a list or array in a program is a data structure.
While all of Python’s data structures are user-friendly, its most idiosyncratic one is the dictionary.
Dictionaries in Python can store heterogeneous values, whether they be numbers, letters, or strings of multiple characters. They can also be indexed by key values.
- Productive
The object-oriented design of Python enhances its processing capacity leading to more speed and productivity.
This is why developers use Python to make complex network applications. Django, a high-level Python framework for web app development, is a good example of this.
When Is the Use of Python Recommended?
There are several instances where the use of Python would be recommended.
The first would be for applications that rely heavily on a graphical user interface (GUI). Python has many GUI frameworks, the tkinter module being a fan favorite.
Turtle, a module in tkinter, is often introduced to beginner programmers as a standalone implementation. Novice developers are able to code instructions to a moveable drawing stick i. e. the turtle, and draw images.
The most common uses of Python GUI programming are for building games, computational applications like graphs and calculators, and image processing.
Developers also utilize Python for language development, prototypes, operating systems, business application, and web frameworks or applications.
Which Companies Use Python?
It shouldn’t come as a surprise that some major companies are using Python as their premier programming language. Let’s see why.
Probably not one of the companies listed here is unfamiliar. But Google should be by far the most familiar.
Google is one of the largest companies in the world. Primarily known for its search engine, it also plays a foundational role in services such as the Android operating system, Youtube, and Stadia.
Python is a core language for Google. Its simplistic syntax and easy maintenance allows for rapid deployments – an important attribute for the most hyped up Google projects.
The language is also a functional asset for machine learning and artificial intelligence. These facets are integral to Google’s search algorithms.
Facebook is a social networking site, and the most triumphant of them all. Despite being developed in 2004, Facebook has over 2.6 billion users, and it’s not slowing down.
Python’s package support is a big factor in Facebook’s ongoing development. The engineering team behind Facebook also contributes to Python’s open-source community with its own features and bug fixes.
Related read: 15 companies that use Node.Js
Instagram is another social media platform but it operates primarily through a mobile app and digital photography is the main form of content.
Django, previously mentioned as a framework for building web apps, can credit Instagram for having the largest implementation of the framework.
Through Django, Instagram can present itself as a mobile application, though it’s coded natively as a web app.

What Is Java?
Java and Python share many characteristics. This is why the Python vs. Java holy war probably won’t end anytime soon.
The upside is that you won’t have to sit through another long-winded explanation to understand why Java is a valuable language to use.
In short, Java is a general-purpose class-based, object-oriented programming language. You should have the terms object-oriented and general-purpose down pat and saved in your mental dictionary.
Another trait of Java is that it is a compiled language, at least somewhat. Typically, compiled languages stand in opposition to interpreted languages.
Compiled languages are directly translated to machine code at compilation in turn for interpreted languages that wait until runtime.
Since machines are getting a full translation, compiled languages tend to execute faster and be more efficient.
In Java specifically, compilation works differently, and there are two programs that the environment depends on.
The first is the Java Just-In-Time (JIT) compiler. And the second is the Java Virtual Machine (JVM).
The JIT compiler compiles the source code into a low-level version called byte code.
On the other hand, the JVM acts as a middle-man, blurring the definitions when it comes to interpreted and compiled languages.
Portability describes the usability of the same software in multiple environments. One way to characterize this feature is by the motto, “Write once, run everywhere.” The slogan is meant to be a descriptor of Java’s cross-platform capabilities.
The language was designed to have as few implementation dependencies as possible, meaning that to run on different platforms developers won't have the same dependencies that a language like Python might need.

What Are the Advantages of Java?
Java has some key conveniences; and if you’re truly dedicated to the Python vs. Java debate, it’s only fair to give both sides due process.
After all, judging by the numbers you saw, Java is more popular than Python.
With that said, look no further for the following Java advantages.
- Cross-Functional
If you’ve neglected to take away anything from this reading material, then heed now that Java is a highly portable language.
There are many ways to describe its portability from the adjective cross-platform to a quick summary of its implementation dependencies to a four-worded slogan. But you get the idea.
- Multithreading Support
Multithreading in programming refers to when two or more parts of a program run concurrently to optimize central processing unit (CPU) usage.
Java can effectively be used to program large systems, making such a feature nearly imperative.
- Community
Alike to Python, Java has a large community which can be attributed to its popularity. However, Java is also popular amongst large-scale enterprises.
Though Python is showing its head in some of the same cliques, Java has a substantial base for business-oriented developers, resulting in a niche market in addition to the larger community.
- Development Tools
Java has some really nice development tools, Eclipse SDK and Netbeans, to name a few. Both have debugging capabilities and work as integrated development environments (IDEs).
Eclipse especially may be the most used platform for Java developers. The IDE supports auto-completion, and more importantly, development at an industrial level.
When Is the Use of Java Recommended?
Being general-purpose, Java has the capacity to run all sorts of applications.
A number of these match up with Python, including scientific applications, GUI applications, web applications, and business applications.
But one outstanding tidbit about Java is that it is refreshingly middle-level – though there is some dissent on that given developers are unsure of how middle-level should even be defined.
Here’s a pretty straightforward explanation: Middle-level languages combine elements of both low-level and high-level language.
Essentially, middle-level languages can offer a low-level access to memory while still providing a high-level abstraction through their readable syntax.
To put it one way, Java is a viable language to use for systems programming, a type of programming allotted to building large and/or embedded systems.
Such systems have software that interacts directly with the hardware.
This interaction requires a reasonable amount of complexity, and middle-level languages take the bait.
Because Java is a middle-level language, you can build complex systems like web servers, application servers, and other middleware products using Java.
Which Companies Use Java?
Naturally, Java’s popularity would attract some spectators.
It is the responsibility of professional developers to watch out for trends and always look for ways to optimize their programming.
Some major companies have done just that and are faithful Java developers.
- Android
Android is a mobile operating system currently powering 2.5 billion devices. Take note that an operating system is not to be confused with a phone manufacturer. This seems to be a common misinterpretation.
For instance, an Android phone can be a Samsung. It can also be an LG or HTC.
At any rate, Android and iOS are the two highest-performing mobile operating systems, the Windows phone having been disbanded in 2017 for failing to keep up with Android and iOS.
While it’s not appropriate to discuss whether Android or iOS is better right at this minute, it is worth knowing why Android developers must use Java to develop for the Google Play Store.
Java is a sensible choice for Android because of its mass popularity and community, as well as its high portability.
As the motto, “Write once, run everywhere,” rings true, many Java developers can easily transition to mobile development in Android.
Popularity and community only increase this reality, extending a full-circle effect. Many willing developers come running to Android’s doors, increasing the popularity of the operating system itself.
- Uber
Uber is a ride-hailing company that’s deployed as a mobile app.
All you need is some basic contact information to make an account and then you’ll no longer have to remember any complicated hand gestures to catch a cab.
This taxi alternative chose Java for its performance rankings.
Uber developers also take advantage of the open-source ecosystem as it permits integration with external technologies for database management and analysis.
- Netflix
Netflix is the most well-known streaming service for watching films and series at a low monthly cost.
The website is a useful illustration of a single-page application. Single-page applications do not need to be reloaded in spite of their dynamic content.
Rather than just Java itself, Netflix uses Spring Boot, a Java-based framework used for developing microservices. Microservices is an architectural programming style whereas a singular application can be structured as a collection of services.
Developers favor microservice applications because they are easy to maintain and test.
Andy Glover, Director of Engineering at Netflix, also likes Java because the language is accompanied by high access to developers who can quickly catch up to speed and start developing.

Conclusion
You’ve cruised through every point on the Python vs. Java deliberation. Python and Java do share some similarities, mainly in that they are both object-oriented and general-purpose. These are utilitarian qualities to have for any programming language.
Where Java and Python contrast holds the source of the real contradictions. Python, for one, is dynamic and interpreted. But Java is static and compiled.
Java is faster, but Python is easier. Hopefully, at this point, you’ve found some answers. You’ve certainly done the reading.
And now, if you are in search of Senior Python developers and/or Senior Java Developers, Trio is here to help you with the best professionals in the market.
Related reading:
Frequently Asked Questions
What is Python?
Python is a high-level, general-purpose interpreted programming language.
When is the use of Python reccomended?
Developers utilize Python for language development, prototypes, operating systems, business application, and web frameworks or applications.
What is Java?
Java is a general-purpose class-based, object-oriented programming language.
When is the use of Java recommended?
Java can be used for systems programming in addition to general-purpose programming.

Cordenne Brewster
Cordenne Brewster is a tech enthusiast whose ardor is best expressed through the written word. With contributions ranging from software development to scaling, Cordenne provides insights to keep the curious and inquisitive informed, well-read, and on-trend.
Read Next

The fintech industry is powered by a venerable tech stack behind the scenes. These technologies are responsible for the billions of dollars flowing into fintech companies in the past 3-4 years.
Python is currently one of the most loved programming languages according to the Stack Overflow Developer Survey 2022. It also makes for a versatile fintech development tool owing to its vast ecosystem of financial libraries. Plus, it's simple syntax and high-level language tenets make it easy to learn for non-technical people.
Read on to learn how to leverage Python in finance and the libraries to help you do it.
Why Is Python Widely Used by the Financial Sector?
The finance sector and fintech in particular operate in a fast, competitive, and heavily-regulated environment. Time-to-market is key and efficiency and ease of use are highly desired in any technological tool.
Python lends itself well to fintechs by scoring high on the above metrics and more. The most significant advantages it brings to the fintech sector are:
Accelerated Time-To-Market
The fintech space is marked by hundreds, if not thousands of players vying to crack the next big solution and get funded. There really is no place for laggards or technologically hesitant companies. Python’s flexible and scalable code enables developers to quickly build a minimum viable product (MVP) and test its efficacy on an existing market problem.
Companies no longer need months of work to test the waters with a new idea. Once they’ve validated their MVP, they can easily modify and refine it, thanks to Python’s performant code.
Increased Simplicity
Python was designed with readability in mind. Its syntax resembles plain English and is fairly easy to learn and master which is especially useful for designing complicated financial models. It’s also known for its concise code and is hence perfect for deploying large financial applications.
Its simplicity also minimizes potential errors and can save organizations time and money by avoiding penalties in a heavily regulated industry.
Unprecedented Functionality
Fintech developers don’t need to design their applications from the ground up. Python makes the job easy with its rich collection of standard and third-party libraries and tools.
Financial software involves analysis, algorithms, models, and other complex mathematical concepts. By providing these solutions built-in using various libraries and third-party integrations, Python surpasses other programming languages.
Rising Popularity
In terms of popularity, Python sits well above Java and C++ which are also commonly used by the financial sector.
Python provides stellar support to fintech developers, due to its open-source codebase and excellent support from a passionate community. These factors naturally provide fintechs with ample Python talent to choose from.
Better Versatility
Economists and other finance professionals don’t need to get their MATLAB models translated into Python code. Python supports end-to-end development of financial models and solutions in a single environment. It’s a versatile tool for prototyping and development for both small and large applications.
4 Applications of Python in Fintech
Fintech applications encompass a wide range of sub-verticals and mathematical disciplines. The beauty of Python is that its multiple libraries give developers access to countless pre-built instances of financial models and solutions.
Here are four major applications of Python in finance.
1. Data Analysis & Visualization
Making sense of large and complex datasets and visualizing them for further predictive analytics is at the core of many fintech solutions. Python libraries are equipped with robust data visualization, statistical analysis, and machine learning capabilities. Pandas, PyBrain, and Scikit are some examples of such libraries.
2. Banking Software
Banking applications, both traditional and modern, make use of Python’s simplicity and scalability. ATM software uses Python. So does Venmo for its payment services. Many other fintech companies like the payment processor Stripe and the trading platform Robinhood utilize Python for their platforms as well.
3. Cryptocurrency
With new players entering the cryptocurrency space almost every day, the demand for market analysis programs is also increasing. Companies dependent on analyzing cryptocurrency prices and offering predictive insights need these programs on a daily basis.
Data analysis tools like Anaconda and many decentralized platforms on the blockchain utilize Python and its libraries to empower their code.
4. Stock Trading
Python’s impressive data analysis capabilities are a great fit for designing stock trading strategies and offering predictive insights into the markets. Algorithmic trading is no longer limited to large corporations. Anyone can use Python’s libraries to design their own predictive algorithms for stock trading.
What Are the Advantages of Python Over Excel?
Microsoft Excel is one of the most preferred tools for data analysis and visualization. It’s easy to pick up and offers a decent degree of functionality. But Python leaves Excel in the dust when it comes to working with data. Here’s why:
-
Better Data Import & Processing: Cleaning multiple large datasets in Excel isn’t really what you’d call simple. It’s tedious and time-consuming. Python can easily recognize and clean both structured and unstructured data much faster than Excel.
Plus, performing tasks like merging or recoding data are also much simpler in Python.
-
Powerful Automation: Excel is many things but it isn’t an automation powerhouse. If you wanted to run the same analysis week after week with different data, you’d have to do it manually in Excel.
But in Python, you can write a simple script that imports the new data every week and performs the analysis automatically, while also outputting the results in your desired format.
-
Easier Debugging: When something doesn’t go according to plan in Excel, you’re given an error notation and left to fend for yourselves. In Python, however, you'll get an error message explaining what exactly went wrong.
Moreover, if you’ve left comments in your code, you’ll have additional information to help you fix the source of the error.
-
Open-Source Accessibility: Excel might help you do a lot with your data, but you’re ultimately dependent on Microsoft for feature updates and support. Whereas Python is a free, open-source language which can anyone can update and add functionality to.
-
Superior Statistics & ML capabilities: Excel isn’t suited to building advanced statistical and machine learning models. Python, with its extensive third-party libraries, has superior tools to easily create advanced data analysis models.
-
Advanced Data Visualization: Data visualization is essential for effective communication with stakeholders. Although Excel has a robust data visualization interface with its charts and graphs, Python lets you do much more with your data.
You can create more customizable graphs and charts and use techniques that are simply much more flexible as compared to Excel.
-
Cross-Platform Portability: Python’s scripts are portable across platforms like Windows, MacOS, Linux, and more. This isn’t common with other preferred technologies in the fintech industry, including Excel.
The 10 Most Useful Python Packages for Fintech
Now that you’re aware of Python’s incredible functionality for building fintech applications, it’s time to learn the most useful packages or libraries that will actually help you do it.
1. NumPy
NumPy (pronounced num-pi) is one of the most basic yet essential libraries in Python. It brings several mathematical and scientific computing capabilities to the language, which other libraries on this list build on.
It introduces concepts like n-dimensional arrays and matrices into Python and contains basic functions to manipulate such data structures.
2. SciPy
SciPy introduces the tools to build sophisticated data models from the basic mathematical structures provided by NumPy. Any statistical model requires algorithms for tasks like clustering, interpolation, transformation, integration, and more.
Hence, SciPy is the library providing developers with the advanced techniques to build predictive data models, a mainstay of many fintech applications.
3. Pandas
Pandas is a popular Python library known for its ‘DataFrame’ and ‘Series’ structures that are specially designed for data analysis and model building. Pandas is optimized for multiple kinds of data like tabular, multidimensional, and heterogeneous. You can also create basic visualization plots using this library.
It also provides concise and powerful functions for importing and manipulating data.
4. statsmodels
While SciPy provides advanced statistical tools and Pandas helps implement them, statsmodels introduces more thorough testing of different statistical models. Diagnostics and results statistics for every model are available and the results are tested against statistical packages to ensure accuracy.
5. Quandl
Quandl allows you to access financial datasets from central banks, government websites, multinational companies, and stock markets to help you build the financial model you desire. You simply need an API key to access most of the raw datasets for free, with more in-depth ones available for a fee.
6. Zipline
Zipline brings many of the above libraries together to become an algorithmic trading library. Quantopian, a popular platform for building trading strategies, is powered by Zipline.
It imports data from Quandl, and helps you design and implement custom trading algorithms. It also includes backtesting of algorithms and live trading.
7. Pyfolio
Pyfolio enables fintech developers to generate tearsheets containing performance statistics pertaining to the algorithms they designed with Zipline. Stats like annual returns, Sharpe ratios, portfolio turnover, and more are easily available through Pyfolio.
8. TA-Lib
Technical Analysis Library or TA-Lib can be used as an alternative to Zipline and Pyflio. It’s a C++ library with a Python wrapper available. TA-Lib provides common financial tools like momentum indicators, volatility indicators, cycle indicators, pattern recognition, and pure statistical functions.
9. QuantLib
QuantLib is another alternative to Zipline and Pyflio. It is also written in C++ and then exported to Python. Quantlib is optimized for building tools related to modeling, trading, and risk management.
Its algorithms include features like yield curve models, solvers, Monte Carlo analysis, market conventions, and more.
10. Matplotlib
While Pandas offers some basic visualization tools, it’s not a data visualization library like Matplotlib. It is one of the easiest packages to implement for financial modeling. It has a simple syntax and extensive documentation.
Supercharge Your Python Project With Trio
Python is primed for fintech development but excellent results require excellent developers, If you’re in the market for hiring Python developers for your project, Trio can help make your job easier.
Trio developers are world-class professionals and are thoroughly vetted to guarantee you get the best results for your projects. Partnering with Trio also means you don’t need to pay inflated hiring costs or get bogged down by HR processes. Trio handles everything for you, end to end. Contact Trio today to learn more about connecting with top-tier Python talent from around the world.

Python is known as a versatile, general-purpose programming language. It is an open-source high-level language that’s easy to learn due to its use of plain English syntax. Due to numerous advantages (that we’ll address later), the multi-paradigm programming language lends itself well to varied use cases.
From its initial days in 2000, Python 2 came a long way from being a new kid on the block to becoming a favorite of programmers. With Python 2.7 being the last major upgrade back in 2010, Python 2’s end-of-life date was January 1, 2020.
Python 3 was released as an upgrade to Python 2 in 2008 and the two versions co-existed for around a decade. Today, Python 3 is used by 95% of Python developers. If you’re in the market for Python developers, you might favor Python 3 over Python 2.
But, what exactly is the debate when it comes to Python 2 vs. Python 3? And is Python 2 still relevant? Read on and you might be surprised by the answer.
What Is Python 2?
Python 2.0 was meant to bring more inclusivity and coding literacy to the masses. Before its release in 2010, Python was largely supported by its creator Guido van Rossum who developed the original version of the language in 1991.
With Python 2, Rossum opened up Python's development and improvement to the larger developer community. As the community contributed to future releases and improved upon its codebase, Python 2 grew to become one of the most commonly used languages in the world.
Python 2 took the language’s original objective of spreading coding literacy to another level due to its array of improvements over previous versions.
It has also played a major role in the development of languages like Perl and Ruby and is used by organizations like Netflix, Spotify, Reddit, Uber, and Instagram today.
What Is Python 3?
Python 3 was released in 2008. It sought to improve upon Python 2 without making radical changes with a new 2.x release. Hence, Python 3 came about as a separate branch of the overall Python ecosystem. By design, Python 3 is backward incompatible with Python 2.
The user base of Python is split between Python 2 and 3 depending on differences in use cases and their willingness to undertake complex migrations.
From web development and computer graphics to machine learning and data analytics, the two versions of Python were suited to different use cases. Even now, Python 2 is preferred over Python 3 when coding for computer graphics, games, and mobile development.
Although some features of Python 3 have been brought over to Python 2 to facilitate easy migration to Python 3, the process still requires considerable effort.
What Are the Differences Between Python 2 and Python 3?
With Python 3 being such a major departure from Python 2, there are bound to be major differences between the two versions.
- Backwards compatibility: While Python 2 code can be ported to Python 3 with some effort, Python 3 is not backwards compatible with Python 2.
- Syntax: Python 2 has a more complicated syntax and is more difficult to understand compared to Python 3, though the syntaxes are similar.
- Modern usage: Python 2’s usage has virtually ceased while Python 3 is more popular than ever and is used by 95% of Python developers.
- Application: Python 2 is preferred for select use cases like mobile development and computer graphics while for everything else, Python 3 is still the version of choice.
- ‘Print’: While Python 2 considered ‘print’ a statement, Python 3 considers it a function.
- Storage of strings: Python 2 stores strings in ASCII by default while Python 3 stores them in Unicode.
- Integer division: Python 2 delivers an integral value when dividing integers whereas Python 3 delivers floating-point values,(e.g., 9 divided by 4 will yield 2 in Python 2 but 2.5 in Python 3).
- Exceptions: Python 2 encloses exceptions in notations whereas Python 3 encloses them in parentheses.
- Variable leakage: Variables are mutable in Python 2 (e.g., when used inside a for-loop). But in Python 3, variable values are not changeable.
- Iteration: In Python 2, the xrange() function is used for iterations but in Python 3, the new function Range() is used instead.
Why Move To Python 3?
Python 2.7, released in 2010, didn’t see any successor, and support for Python 2 was scheduled to end on January 1, 2020. That date has come and gone, and with it, Python 2 has officially become obsolete.
So, as an enterprise, should you move to Python 3? Yes, absolutely.
Python 3 is the modern version of the language and apart from enjoying the variety of benefits listed before, it’s the more secure and up-to-date version. If you’re still running Python 2, your systems are prone to security issues and bugs.
Python 3 also has a much larger community that regularly fixes bugs and works on newer releases to improve the functionality and stability of its codebase. You get access to better performance and always-updated features.
Python 3 was developed as a more readable and easier-to-comprehend version of the language.
Why Stay With Python 2?
While Python 2 is obsolete now and poses security and stability concerns if you're still running it on your systems, there might still be a reason to stay with it.
Many companies have applications written in Python 2 and don’t want to migrate to Python 3 for fear of breaking the applications. Migration does tend to be an effort-heavy task and requires not just time but also a significant monetary investment.
Maintaining such legacy applications means retention of Python 2 code alongside efforts to adopt Python 3 for newer development tasks.
Which Version Is Better: Python 2 or Python 3?
After going over the differences between the two versions of Python and the reasons to ‘stay or move’, one could wonder which one is the better version.
Advantages of Python 3
Python 3, by all means, is the better version of the two. The Python 2 vs. Python 3 debate doesn’t really hold water owing to the vast improvements Python 3 has over Python 2.
In addition to performance, syntax, and all other quality-of-life improvements, Python 3 is also the better option in terms of security and reliability. The ever-growing Python 3 community ensures bugs are readily fixed and newer features are introduced regularly.
Advantages of Python 2
Python 2 does lend itself better in some use cases, as we discussed above. If you’re working with computer graphics, games, or mobile development, it’s worth checking out Python 2.
For developers, perhaps the only other reason to learn or work with Python 2 is to get skilled in Python 3 migration. Moreover, companies require Python 2 developers for maintaining legacy Python 2 code.
How To Choose the Best Python Version To Use?
Python 3 might be the better version, objectively, but you still need to evaluate your needs and choose the best Python version for your project.
If you’re a fairly new organization, chances are that you’re not using Python 2. In that case, there’s fairly no reason to consider Python 2 unless you’re working with specific libraries that aren’t yet compatible with Python 3.
If you do have legacy Python 2 applications and don’t want to migrate to Python 3 yet, you can retain Python 2 and leverage developers for maintaining your codebase. But it’s recommended that you plan for migration to Python 3 as soon as possible. Also, try to choose Python 3 for all new development projects.
Regardless of your Python version, you’ll need to hire Python developers for development, migration, or simply maintenance projects.
Trio can help you hire world-class Python developers without investing thousands into a lengthy recruitment cycle.
When you partner with Trio, you don’t have to incur hiring costs, which can amount to a considerable percentage of a developer’s annual salary. Trio developers are well-trained, driven, and committed to the long run.
Moreover, you don’t need to handle HR functions like payroll, benefits, and compliance. Trio takes care of all of that for you.
Conclusion
Python is easy to pick up and learn, which also leads to a vast number of Python developers vying for in-demand Python roles. You need to thoroughly vet and interview the candidate pool to hire the right developers for your project. And that can sometimes take months.
Trio offers you plug-and-play recruitment and connects you with verified and senior Python developers from around the world. Contact us today to learn more about how we can help scale your next project to new heights.

Python frameworks provide the basic infrastructure for developing a robust Python software application. Depending on the software project your team is trying to build, there are better and worse Python frameworks suited for its purpose.
Sources demonstrate that Python's popularity has been steadily increasing in the past decade or so, with approximately 15% of Stack Overflow questions tagged “python” in 2021.
And as such, the corresponding technologies of Python gain similar popularity. It is common to see questions like “What is a Python framework?” or side-by-side Python framework comparisons.
Today, you’ll learn about numerous Python frameworks to use for your software development project. But first, what is a Python framework? Stick around to find out!
What Is a Python Framework?
A Python framework, like any framework, cushions your software development project with a foundation or substructure to build on top of. To be clear, software frameworks render the generic functionality of the program you’re trying to create, so your developers don’t have to start from scratch.
Python frameworks in particular, will automate standard application building steps using the Python programming language. As a result, Python developers will save time on development and your business will benefit overall.
Where Is the Use of Python Most Recommended?
Python is a general-purpose, interpreted, object-oriented programming language. The designers of the language prioritized code readability whilst building Python, making the language highly productive.
Readability being an important part of Python’s founding philosophy, Python’s most salient representations of this tenet include its intuitive use of the English language and easily navigable code blocks.
Python’s prime asset is its significant white space, which developers use to isolate code blocks. This tactic encourages easy-to-read code and gives a more friendly appearance to the program compared to other programming languages that use special characters such as brackets.
Released in 1991 by Guido van Rossum, today Python is known as a “batteries included” language because of its large standard library. Python libraries describe pluggable pieces of code that you can work into your program with a simple function call.
The Python Standard Library is what comes with the language right out of the box. This library is notably extensive, with high-level data structures like dictionaries and lists, turtle graphics, and more.
The Python programming language performs well on both the front-end and back-end of development. Moreover, developers use Python to build a variety of software, from web development to machine learning to data science.
Much of Python’s capacity for a diverse array of programming capabilities involves its simplicity and its standard as well as additional libraries.
Python Framework vs. Python Library
Some people wonder about the difference between Python frameworks vs. Python libraries. Although they both offer developers operational functionalities, their similarities end when it comes to specificity and complexity.
For example, Python libraries are filled with dozens of useful functions for specific purposes, but there is not much complexity. Python libraries perform a simple task and are ultimately a small piece of a large puzzle.
Because frameworks work off a specific comprehension of what your application might look like, even more specificity is permissible. Complexity is the name of the game. Thus, a Python framework will outline the puzzle; the more complex the framework, the more outlining of the internal pieces.
The 3 Main Types of Python Frameworks
Python frameworks come in all shapes and sizes. Factors that may affect which framework you choose include scalability, expertise, and your business-specific goals.
Full Stack Framework
Full-stack frameworks are suitable for both back-end and front-end development. Web development consists of front-end tools for graphic user interface (UI) design and back-end services like databases, security protocols, and business logic.
A full-stack Python framework will carry all the equipment you need to facilitate full-stack development. Django is a full-stack framework and is the second most popular Python framework.
Microframework
Microframeworks are by definition lightweight. In some ways, it is the opposite of a full stack framework. Python’s official Flask documentation explains that the “micro” in microframework signifies that the framework’s “core [is] simple, but extensible”.
The components that are fundamental to a full stack framework like a database management system and certain security measures do not come naturally to a microframework.
While this might seem like a bad thing, it actually encourages flexibility for developers who want to leverage control over their software, only adding in the relevant third-party libraries when they’re completely necessary.
Related reading: Ruby vs. Python - Which Programming Language To Choose?
Asynchronous Framework
Asynchronous programs are event-driven. Rather than line by line operational handling where one function runs after the other, asynchronous code is non-blocking and doesn’t wait for one event to execute before starting another.
Because of this parallel programming technique, asynchronous frameworks allow for a profusion of high-performance concurrent connections via running on an async-capable server.
10 Awesome Examples of Python Applications
25 Python Frameworks To Use In 2023
In total, there are dozens and dozens of Python frameworks. But since you care about your time, here are 25 Python frameworks that stand out the most.
1. CubicWeb
CubicWeb fits the definition of a full-stack framework. It is also a semantic framework. Semantic technologies rely on ontological and conceptual comprehension to understand data.
Though the typical model-view-controller (MVC) architecture is more commonly in use for developing UIs, CubicWeb uses the concept of cubes. Cubes join together to create an instance with configuration files, a database, and a web server.
2. AIOHTTP
AIOHTTP is an asynchronous framework as well as an HTTP client/server for asyncio. Though some of these words may seem foreign, the gist is that AIOHTTP allows your developers to build asynchronous clients and servers for your web application.
3. Dash
Dash is a microframework best suited for building analysis-oriented Python applications. The framework is a frequent choice for businesses that have stakes in machine learning and data science.
4. Bottle
Bottle is another microframework. Fast and simple, its original design was specified for building application programming interfaces (APIs).
Like the best of microframeworks, Bottle emphasizes its lightweight build, namely by implementing everything into a single source file and relying on few dependencies. Other important features of Bottle include routing, template, utilities, and a built-in HTTP server.
Bottle works closer to hardware than other frameworks. However, you should opt for a more complex framework if you think your program might span longer than 500 lines of code.
5. CherryPy
CherryPy calls itself a minimalist framework. With CherryPy, you can create an entire application using the principles of object-orienting programming. As a result, development is faster and easier.
6. Falcon
Yet another API-oriented framework is Falcon. Falcon is a minimalist microframework geared towards rapid application development. Developers can take advantage of Falcon to build RESTful APIs, app backends, and microservices without the burden of unnecessary abstractions.
7. Django
Django is one of Python’s more popular Python frameworks. Being full stack in nature, Django comes equipped with the tools to build large and complex web applications.
8. Flask
Flask is historically in competition with Django. Django and Flask are the top two most popular Python frameworks. That said, they are wildly different.
Unlike Django, Flask is a microframework and does not hold any tools or functions that a third-party library can fulfill as essential to its packaging.
9. Giotto
Giotto is a Python framework stressing the separation of concerns that the classic MVC architecture elicits. Because of Giotto’s generic implementation of views, models, and multiple pluggable controllers, the framework is a vessel for simplifying and shortening development.
10. Growler
Growler is both an asynchronous framework and a microframework. The framework uses Python’s asynchronous library, asyncio, along with middleware to process HTTP requests.
11. Pylons
Pylons borrows the finest ingredients of Perl, Python, and Ruby to bring to life a full stack framework with a focus on rapid development. Similar to Flask, Pylons is lightweight and flexible.
12. Pyramid
Pyramid is a leading full stack Python framework. Scalability is its biggest asset as small and full-scale applications can depend on Pyramid for their development.
On its official website, Pyramid calls itself a “Goldilocks Solution: not too small, not too big, just right.”
13. Sanic
Sanic shares similarities to Flask, but its asynchronicity makes it even faster than Flask. Benchmark tests show that Sanic can handle tens of thousands of requests per second.
14. Hug
Hug is a microframework for developing APIs. Labeled the fastest framework for Python 3, Hug is paving the way for the technology of the future.
15. Morepath
Dubbed the “Super Powered Python Web Framework”, Morepath is an expressive model-driven microframework providing routing to its models.
Like with MVC patterns, models represent data and views represent the UI. In Morepath, an application consists of models which are routed to a URL path. Content is expressed to the web through views.
16. Pycnic
Pycnic is an object-oriented microframework empowering developers to build APIs based on JSON. JavaScript Object Notation (JSON) is a syntax for manipulating data stored in objects.
17. Tornado
Initially developed to support a social media company named FriendFeed that has since been acquired by Facebook, Tornado is an asynchronous Python framework that can handle several thousand concurrent users at once with a non-blocking network I/O.
18. TurboGears
TurboGears has the versatility for use as a full stack framework or a microframework. The framework is data-driven, user-friendly, and extends a templating engine and an object-relational mapper (ORM).
19. Web2py
Web2py was originally built as a teaching tool, but as a full stack framework, it is loaded with tons of features to do so much more. For instance, there are no requirements for installation and configuration; web2py is cross-platform; and it comes with its own integrated development environment (IDE).
20. FastAPI
FastAPI is a bit self-explanatory. It’s a modern Python framework for building APIs with features to speed up the development process. Much of its design owes it credit to Flask.
21. Grok
Grok leverages important programming principles such as ‘don’t repeat yourself’ (DRY) and ‘convention over configuration’ (CoC) to promote an agile development experience.
DRY strives to reduce repetition by standardizing abstractions. Likewise, CoC aims to decrease the grueling decision-making process for developers by starting them off with a conventional foundation to build up from so they can save time on configuration.
22. BlueDream
BlueBream is a Python framework that is most optimal for building medium and large applications. More than a framework, BlueBream is a server and library too. Some of its best features are its component architecture, transactional object database, and integrated security protocols.
Related reading: Python vs. Java - Side-By-Side Comparison
23. Quixote
Quixote is a simple and flexible Python framework for designing web applications. Anyone with a good knowledge base in Python should thrive with Quixote.
24. Weppy
Weppy — stylized as the lowercased “weppy” — is a full stack Python framework that centers simplicity. Its elegant syntax encourages developers to focus on the product the’re building rather than struggling to navigate the framework itself.
25. Zope
Zope is an application server and web framework. Its primary use case is for the development of content management systems (CMS).
How To Choose the Best Python Framework To Use
Using a Python framework is a sure-fire way to speed up and optimize development. Python frameworks are not a must, but it would also be unwise to neglect the opportunity to enhance your development process where at all possible.
To figure out which Python framework is best for your software project, start by evaluating the different types of frameworks you can choose from. Three major categories of frameworks stand out: full stack frameworks, microframeworks, and asynchronous frameworks.
Microframeworks are small yet flexible; full stack frameworks are complex yet scalable; and asynchronous frameworks amplify Python’s capacity for concurrency.
Once you pick which class of Python frameworks is a good fit, you can narrow your choices down by focusing on the frameworks themselves. Listed above are 25 different frameworks with different capabilities.
You should choose a Python framework based on scalability, speed, your developers’ expertise in deploying framework-specific skills, and a number of other considerations that may be conducive to your business.
Going through each and every Python framework probably isn’t worth your time. But what you’ve learned here can better help you pinpoint exactly what you need.
Conclusion
What is a Python framework? It’s a tool to empower your next Python project, but only if you use the right one.
There are a diverse bunch of Python frameworks out there for you that will give you and your software development team a head start on your 2022 project. The Python framework world is your oyster.
Having a good understanding of how your next project will work, even if you're not tech-savvy, will be crucial to choosing the optimal tech stack to support your development.
Research is never a bad thing and if you need to consult with some of the more qualified minds in the industry, there’s no shame in it. That’s why Trio is here to help.
Trio can guide you in choosing the best Python framework for your 2022 project as well as build the project itself using the parameters you set.
Contact Trio now to hire the best Senior Python Developers and start your project today!